sábado, 9 de fevereiro de 2019







x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




 [1b]

x
x

 = entropia reversível
x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




Em física, a partícula em uma caixa (também conhecida como poço de potencial infinito) é um problema muito simples que consiste de uma só partícula que rebate-se dentro de uma caixa imóvel da qual não pode escapar, e onde não perde energia ao colidir contra suas paredes.
Em mecânica clássica, a solução ao problema é trivial: a partícula se move em uma línha reta a uma velocidade constante até que rebate em uma das paredes. Ao rebater, a velocidade é alterada apenas na componente perpendicular à parede, que troca de sinal; o módulo da velocidade não se altera. Uma das soluções possíveis é uma partícula absolutamente estacionária, ou seja, com velocidade zero.
O problema se torna muito interessante quando se tenta resolver dentro da mecânica quântica, já que é necessário introduzir muitos dos conceitos importantes desta disciplina para encontrar uma solução. Entretanto, ainda assim é um problema simples com uma solução definida. Este artígo se concentra na solução dentro da mecânica quântica.

    Descrição quântica do problema

    O problema pode apresentar-se em qualquer número de dimensões, mas o mais simples é o problema unidimensional, ainda que o mais útil é o que se centra em uma caixa tridimensional. Em uma dimensão, se representa por uma partícula que existe em um segmento de uma linha, sendo as paredes os pontos finais do segmento.
    Em termos da física, a partícula em uma caixa se define como uma partícula pontual, encerrada em uma caixa onde não experimenta nenhum tipo de força (ou seja, sua energia potencial é constante, ainda que sem perda de generalidade podemos considerar que vale zero). Nas paredes da caixa, o potencial aumenta até um valor infinito, fazendo-a impenetrável. Usando esta descrição em termos de potenciais nos permite usar a equação de Schrödinger para determinar uma solução.
    Esquema do potencial para a caixa unidimensional.
    Como se menciona acima, se estivéssemos estudando o problema sob as regras da mecânica clássica, deveríamos aplicar as leis do movimento de Newton às condições iniciais, e o resultado seria razoável e intuitivo. Em mecânica quântica, quando se aplica a equação de Schrödinger, os resultados não são intuitivos. Em primeiro lugar, a partícula só pode ter certos níveis de energia específicos, e o nível zero não é um deles. Em segundo lugar, as probabilidades de detectar a partícula dentro da caixa em cada nível específico de energia não são uniformes - existem várias posições dentro da caixa onde a partícula pode ser encontrada, mas também há posições onde é impossível fazê-lo. Ambos resultados diferem da maneira usual na que percebemos o mundo, inclusive se estão fundamentados por princípios extensivamente verificados através de experimentos.

    Caixa monodimensional[editar | editar código-fonte]

    A versão mais precisa se dá na situação idealizada de uma "caixa monodimensional", na que a partícula de massa m pode ocupar qualquer posição no intervalo [0,L]. Para encontrar os possíveis estados estacionários é necessário aplicar a equação de Schrödinger independente do tempo em uma dimensão para o problema:
     [1]
    Considerando que o potencial é zero dentro da caixa e infinito fora, e observando que a função de onde se anula fora da caixa, temos as seguintes condições de contorno:
     [1a]
    e onde
     é a Constante reduzida de Planck,
     é a massa da partícula,
     é a função de onda estacionária independente do tempo[1] que queremos obter (funções próprias) e
     é a energia da partícula (valor próprio).
    As funções próprias e valores próprios de uma partícula de massa m em uma caixa monodimensional de comprimento L são:
     [1b]
    Níveis de energia (linhas discontínuas) e funções de onda (linhas contínuas) da partícula em uma caixa monodimensional.
    Note-se que só são possíveis os níveis de energia "quantizados". Além disso, como n não pode ser zero (ver mais adiante), o menor valor da energia tampouco pode sê-lo. Esta energia mínima se chama energia do ponto zero e se justifica em termos do princípio de incerteza. Devido a que a partícula se encontra restringida a mover-se em uma região finita, a variância da posição tem um limite superior (o comprimento da caixa, ). Assim, de acordo com o princípio de incerteza, a variância do momento da partícula não pode ser zero e, portanto, a partícula deve ter uma certa quantidade de energia que aumenta quando a longitude da caixa L diminui.







    x
    x

     = entropia reversível
    x
    decadimensional
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D









    EstadologiO poço de potencial representa a energia potencial em forma de poço envolvida num certo sistema e pode ser qualificado como finito ou infinito. Um poço de potencial é a região em torno de um mínimo local de energia potencial que, por sua vez, é a forma de energia que está associada a um certo sistema, no qual ocorre interações entre diferentes corpos, e está relacionada com a posição que determinado corpo ocupa.
    A energia potencial de um sistema pode ter quatro origens distintas que estão correlacionadas as quatro forças fundamentais da natureza: força eletromagnética, força gravitacional, força fraca e força forte.
    Sob uma perspectiva quântica, o poço de potencial representa o confinamento quântico da partícula em questão e pode provocar a quantização da energia da mesma, o que, classicamente, não acontece.

      Visão geral

      A energia pode ser liberada a partir de um poço de potencial, se energia suficiente for adicionada ao sistema de tal modo que o máximo local seja superado. Em física quântica, uma partícula pode ser capaz de superar uma barreira de potencial com energia superior à energia da partícula devido devido às características probabilísticas advindas da função de onda das partículas quânticas. Nestes casos, a partícula pode tunelar através das paredes de um poço de potencial.
      A partir de uma analogia clássica, pode-se pensar no gráfico de uma função energia potencial bidimensional como sendo uma superfície de energia potencial, que pode ser imaginada de forma semelhante à superfície da Terra em uma paisagem de colinas e vales. Sendo assim, um poço de potencial seria análogo a um vale rodeado por todos os lados por terrenos mais altos e que, portanto, pode ser preenchido com água (por exemplo, ser um lago) sem qualquer água fluindo para um outro mínimo mais baixo (por exemplo, o nível do mar). No caso da gravidade, a região em torno de uma massa é um poço de potencial gravitacional, a menos que a densidade de massa seja tão pequena que as forças de maré de outras massas sejam maiores do que a gravidade do próprio corpo. Uma colina de potencial é o oposto de um poço de potencial, e é a região em torno de um máximo local.

      Confinamento quântico[editar | editar código-fonte]

      O confinamento quântico é responsável pelo aumento da diferença de energia entre estados de energia e o gap de energia, um fenômeno bem relacionado com as propriedades óticas e eletrônicas de materiais.
      O confinamento quântico pode ser observado quando o diâmetro de confinamento do sistema for da mesma ordem de magnitude do comprimento de onda de de Broglie da partícula confinada. O potencial confinador pode ter origem em barreiras de potenciais devidos a interfaces entre estruturas ou em campos aplicados ao sistema. As propriedades eletrônicasópticas do material são significativamente afetadas quando suas dimensões são drasticamente alteradas. Isso se deve basicamente por serem mais pronunciados os efeitos causados pelo confinamento em certa direção do material, dentre eles pode-se perceber que existe uma quantização da energia que as partículas podem assumir.
      É interessante notar que a solução formal da equação de Schrödinger para sistemas confinados dá ênfase à relação entre a energia e a evolução temporal da fase da função de onda da partícula. A função de onda da partícula é uma função de onda coerente, i.e. a fase da onda só pode mudar por efeito da evolução temporal e por ação determinística de forças. Os efeitos quânticos são preservados quando a função de onda se comporta de maneira coerente. Em sólidos reais, os elétrons geralmente experimentam espalhamentos aleatórios tanto de forma elástica quanto inelástica, a menos que se faça controle preciso das condições e mantenha-se a coerência da função de onda da partícula.

      Sistemas de baixa dimensionalidade[editar | editar código-fonte]

      O confinamento quântico introduz o estudo de estruturas nas quais as dimensões da amostra e/ou a existência de interfaces entre materiais distintos afloram novas propriedades, inclusive alterações na dimensão espacial efetiva do sistema. Nesse aspecto, a física de sistemas de baixa dimensionalidade usa dos conceitos advindos da mecânica quântica para explorar as propriedades de sistemas confinados e suas possíveis aplicabilidades.[1]

      Poços quânticos[editar | editar código-fonte]

      No contexto de sistemas nanoestruturados, são denominados genericamente poços quânticos os sistemas estruturados em camadas, que são homogêneos e macroscópicos em duas dimensões, mas apresentam interfaces entre as camadas ao longo da direção perpendicular, sendo essas camadas suficientes para causar confinamento quântico, definindo, assim, um poço nessa direção.
      De forma geral, tem-se um sistema tridimensional com um potencial que varia apenas ao longo de uma das direções. Através da solução da equação de Schrödinger percebe-se que as energias resultantes descrevem uma partícula livre em duas dimensões enquanto que confinada, e, portanto, com energias quantizadas, em uma direção. Isso configura um gás de elétrons bidimensional.[1]

      Fios quânticos[editar | editar código-fonte]

      É possível construir heteroestruturas nas quais o confinamento quântico se dá em duas direções e mantendo uma das direções livre. Isto caracteriza um fio quântico. Nele, percebe-se, através da solução da equação de Schrödinger para o sistema, que em duas direções existirão energias quantizadas enquanto que na outra tem-se um gás de elétrons unidimensional. Através de uma análise menos superficial, nota-se que densidade de estados no nível de Fermi é importante na determinação das quantidades termodinâmicas e coeficientes de transporte do material e que o confinamento quântico tem efeito marcante sobre a forma relevante da densidade de estados. Considerando o exposto, podemos inferir mudanças nas propriedades de transporte eletrônico de sistemas confinados e pode-se perceber que as características de um fio quântico diferem substancialmente de fios metálicos macroscópicos. A condutância de um fio quântico depende apenas de constantes universais e não de características extensivas do sistema, tais como geometria e material.
      Onde M é o número de canais definidos pelo par de números quânticos associados à quantização devida ao confinamento em direções transversais. A condutância quântica é completamente independente tanto da geometria quanto do material e é relacionado basicamente com constantes universais.[1]

      Pontos quânticos[editar | editar código-fonte]

      O último passo na sequência é também confinar a terceira dimensão, o que caracteriza um ponto quântico. Neste caso, não resta nenhuma dimensão livre e configura uma nanopartícula.[1]a Graceli – 4. E princípio entrópico tempo / instabilidade.


      Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


      Estados térmico.
      Estado quântico.
      De dilatação.
      De entropia.
      De potencia de entropia e relação com dilatação.
      De magnetismo [correntes, momentum e condutividades]..
      De eletricidade [correntes, momentum e condutividades].
      De condutividade.
      De mometum e fluxos variados.
      De potencial inercial da matéria e energia.
      De transformação.
      De comportamento de cargas e interações com elétrons.
      De emaranhamentos e transemaranhamentos.
      De paridades e transparidades.
      De radiação.
      Radioatividade.
      De radioisótopos.
      De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
      De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

      De resistir à temperaturas.
      E transformar em dilatação, interações entre partículas, energias e campos.
      Estado dos padrões de variações e efeitos variacionais.
      Estado de incerteza dos fenômenos e entre as suas interações.


      E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


      E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



      Sobre padrões de entropia.

      Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


      Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


      Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


      A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


      Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


      Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


      Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


      Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


      Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


      Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


      Princípio tempo instabilidade de Graceli.

      Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


      Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


      as dimensões categorias podem ser divididas em cinco formas diversificadas.

      tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



      paradox of the system of ten dimensions and categories of Graceli.



      a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



      that is, categories ground the variables of phenomena and their interactions and transformations.



      and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



      but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



      as well as transitions of energies, phenomena, categories and dimensions.

      paradoxo do sistema de dez dimensões e categorias de Graceli.

      um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

      ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

      e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

      mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

      como também transições de energias, fenômenos, categorias e dimensões.







       = entropia reversível

      postulado categorial e decadimensional Graceli.

      TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


      todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
      matriz categorial Graceli.

      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      1] Cosmic space.
      2] Cosmic and quantum time.
      3] Structures.
      4] Energy.
      5] Phenomena.
      6] Potential.
      7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
      8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
      9] thermal specificity, other energies, and structure phenomena, and phase transitions.
      10] action time specificity in physical and quantum processes.




      Sistema decadimensional Graceli.

      1]Espaço cósmico.
      2]Tempo cósmico  e quântico.
      3]Estruturas.
      4]Energias.
      5]Fenômenos.
      6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
      7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
      8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
      9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
      10] especificidade de tempo de ações em processos físicos e quântico.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


      Matriz categorial de Graceli.


      T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               Dl


      Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

      [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
      trans-intermecânica de supercondutividade no sistema categorial de Graceli.

      EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

      p it = potentials of interactions and transformations.
      Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

      h e = quantum index and speed of light.

      [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


      EPG = GRACELI POTENTIAL STATUS.

      [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

      , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].